Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 853
Filter
1.
World J Surg Oncol ; 22(1): 122, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711095

ABSTRACT

BACKGROUND AND AIMS: The prognosis of hepatocellular carcinoma (HCC) with macrovascular invasion(MaVI)is poor, and the treatment is limited. This study aims to explore the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC), combined with lenvatinib and programmed cell death-1(PD-1) inhibitor in the first-line treatment of HCC with MaVI. METHODS: From July 2020 to February 2022, we retrospectively analyzed consecutive patients with HCC with MaVI who received hepatic arterial infusion FOLFOX(oxaliplatin, 5-fluorouracil, and leucovorin)combined with lenvatinib and PD-1 inhibitor. The efficacy was evaluated by RECIST 1.1. Kaplan-Meier was used to explore the overall survival and progression-free survival (PFS), and the COX regression model was used to analyze the risk factors of PFS. Adverse events (AEs) were evaluated according to CTCAE5.0. RESULTS: Thirty-two patients with HCC complicated with MaVI were recruited from the Second Affiliated Hospital of Nanchang University. Among the patients treated with HAIC combined with lenvatinib and PD-1 inhibitor, ten patients (31.25%) got partial response, eighteen patients (56.25%) maintained stable disease and four patients (12.50%) suffered progressive disease during follow-up; and objective response rate was 31.25%, and disease control rate was 87.5%. The median PFS was 179 days. Univariate and multivariate Cox analysis showed that the extrahepatic metastases and Child-Pugh score were independent prognostic factors of PFS. Twenty-two (68.75%) patients suffered adverse reactions. The main AEs were elevated transaminase (46.87%), thrombocytopenia (40.63%), hypoalbuminemia (28.13%), nausea and vomiting (21.88%), leukopenia (18.76%), abdominal pain (15.63%), hypertension (15.63%) and fever (15.63%). There were seven cases (21.88%) that had grade 3 or above AEs; Among them, two cases with elevated transaminase (6.25%), leukopenia, thrombocytopenia, nausea and vomiting, abdominal pain, and diarrhea occurred in one case respectively. Moreover, no treatment-related death was observed. CONCLUSIONS: Hepatic arterial infusion of FOLFOX combined with lenvatinib and PD-1 inhibitor as the first-line treatment for HCC complicated with MaVI is effective, and adverse reactions are tolerable.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Hepatocellular , Infusions, Intra-Arterial , Liver Neoplasms , Phenylurea Compounds , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Female , Quinolines/administration & dosage , Quinolines/adverse effects , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Retrospective Studies , Aged , Survival Rate , Prognosis , Follow-Up Studies , Adult , Neoplasm Invasiveness , Fluorouracil/administration & dosage , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/adverse effects , Leucovorin/administration & dosage , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Organoplatinum Compounds/administration & dosage
2.
J Appl Oral Sci ; 32: e20230294, 2024.
Article in English | MEDLINE | ID: mdl-38747782

ABSTRACT

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Subject(s)
Cell Movement , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Hyaluronic Acid , Platelet-Rich Fibrin , Regeneration , Hyaluronic Acid/pharmacology , Humans , Fibroblasts/drug effects , Gingiva/drug effects , Gingiva/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Regeneration/drug effects , Time Factors , Cell Movement/drug effects , Reproducibility of Results , Fluorescent Antibody Technique , Real-Time Polymerase Chain Reaction , Collagen , Materials Testing , Wound Healing/drug effects , Biocompatible Materials/pharmacology , Collagen Type I/analysis
3.
Acta Biomater ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38692469

ABSTRACT

Bacterial infection poses a significant impediment in wound healing, necessitating the development of dressings with intrinsic antimicrobial properties. In this study, a multilayered wound dressing (STPU@MTAI2/AM1) was reported, comprising a surface-superhydrophobic treated polyurethane (STPU) sponge scaffold coupled with an antimicrobial hydrogel. A superhydrophobic protective outer layer was established on the hydrophilic PU sponge through the application of fluorinated zinc oxide nanoparticles (F-ZnO NPs), thereby resistance to environmental contamination and bacterial invasion. The adhesive and antimicrobial inner layer was an attached hydrogel (MTAI2/AM1) synthesized through the copolymerization of N-[2-(methacryloyloxy)ethyl]-N, N, N-trimethylammonium iodide and acrylamide, exhibits potent adherence to dermal surfaces and broad-spectrum antimicrobial actions against resilient bacterial strains and biofilm formation. STPU@MTAI2/AM1 maintained breathability and flexibility, ensuring comfort and conformity to the wound site. Biocompatibility of the multilayered dressing was demonstrated through hemocompatibility and cytocompatibility studies. The multilayered wound dressing has demonstrated the ability to promote wound healing when addressing MRSA-infected wounds. The hydrogel layer demonstrates no secondary damage when peeled off compared to commercial polyurethane sponge dressing. The STPU@MTAI2/AM1-treated wounds were nearly completely healed by day 14, with an average wound area of 12.2 ± 4.3 %, significantly lower than other groups. Furthermore, the expression of CD31 was significantly higher in the STPU@MTAI2/AM1 group compared to other groups, promoting angiogenesis in the wound and thereby contributing to wound healing. Therefore, the prepared multilayered wound dressing presents a promising therapeutic candidate for the management of infected wounds. STATEMENT OF SIGNIFICANCE: Healing of chronic wounds requires avoidance of biofouling and bacterial infection. However developing a wound dressing which is both anti-biofouling and antimicrobial is a challenge. A multilayered wound dressing with multifunction was developed. Its outer layer was designed to be superhydrophobic and thus anti-biofouling, and its inner layer was broad-spectrum antimicrobial and could inhibit biofilm formation. The multilayered wound dressing with adhesive property could easily be removed from the wound surface preventing the cause of secondary damage. The multilayered wound dressing has demonstrated good abilities to promote MRSA-infected wound healing and presents a viable treatment for MRSA-infected wound.

4.
Sci Total Environ ; 931: 172938, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703850

ABSTRACT

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.

5.
J Ultrasound Med ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700113

ABSTRACT

OBJECTIVES: The aim of this study is to determine the optimum and fine values of the number and transmission angles of tilted plane waves for coherent plane-wave compounding (CPWC)-based high local pulse wave velocity (LPWV) estimation. METHODS: A Verasonics system incorporating a linear array probe L14-5/38 with 128 elements and a pulsatile pump, CompuFlow1000, were used to acquire radio frequency data of 3, 5, 7, and 9 tilted plane wave sequences with angle intervals from 0° to 12° with a coarse interval increment step of 1°, and the angle intervals from 0° to 2° with a fine interval increment step of 0.25° from a carotid vessel phantom with the LPWV of 13.42 ± 0.90 m/s. The mean value, standard deviation, and coefficients of variation (CV) of the estimated LPWVs were calculated to quantitatively assess the performance of different configurations for CPWC-based LPWV estimation. Ten healthy human subjects of two age groups were recruited to assess the in vivo feasibility of the optimum parameter values. RESULTS: The CPWC technique with three plane waves (PRF of 12 kHz corresponding to a frame rate of 4000 Hz) with an interval of 0.75° had LPWVs of 13.52 ± 0.08 m/s with the lowest CV of 1.84% on the phantom, and 5.49 ± 1.46 m/s with the lowest CV of 12.35% on 10 subjects. CONCLUSIONS: The optimum parameters determined in this study show the best repeatability of the LPWV measurements with a vessel phantom and 10 healthy subjects, which support further studies on larger datasets for potential applications.

6.
ACS Nano ; 18(18): 11988-12009, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652114

ABSTRACT

Periodontitis, a chronic oral disease instigated by bacteria, severely compromises human oral health. The prevailing clinical treatment for periodontitis involves mechanical scraping in conjunction with antibiotics. Phototherapy is employed to rapidly remove the bacteria and achieve periodontitis treatment, effectively circumventing the adverse effects associated with traditional therapies. Constructing 2D/2D van der Waals (VDW) heterojunctions is a key strategy for obtaining excellent photocatalytic activity. Herein, a 2D/2D violet phosphorus (VP)/Ti3C2 VDW heterojunction is designed using an interfacial engineering strategy. By constructing an electron transport "bridge" (P-Ti bond) at the heterogeneous interface as an effective transfer channel for photogenerated carriers, a compact monolithic structure between the VP and Ti3C2 phases is formed, and the spatial barrier for electron transfer at the interface is eliminated. Meanwhile, the strong directional built-in electric field induced by the intensive electron-coupling effect at the heterogeneous interface served as an internal driving force, which greatly accelerates the exciton dissociation and charge transfer in the photocatalytic process. These excited photogenerated electrons and holes are trapped by O2 and H2O on the surfaces of Ti3C2 and VP, respectively, and are subsequently catalytically converted to antibacterial reactive oxygen species (ROS). The VP/Ti3C2 VDW heterojunction eradicated 97.5% and 98.48% of Staphylococcus aureus and Escherichia coli, respectively, by photocatalytic and photothermal effects under visible light for 10 min. The VP/Ti3C2 nanoperiodontal dressing ointment effectively attenuated inflammatory response, reduced alveolar bone resorption, and promoted periodontal soft and hard tissue repair. Its periodontitis therapeutic effect outperforms the clinically used Periocline.


Subject(s)
Periodontitis , Phosphorus , Titanium , Periodontitis/microbiology , Periodontitis/therapy , Phosphorus/chemistry , Titanium/chemistry , Phototherapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Staphylococcus aureus/drug effects , Escherichia coli , Electricity , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/chemistry , Surface Properties , Animals , Electron Transport , Microbial Sensitivity Tests
7.
Insects ; 15(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38667424

ABSTRACT

In this study, the changes in the conventional nutrient and mineral compositions as well as the metabolomics characteristics of the red palm weevil (RPW) Rhynchophus ferrugineus Olivier (Curculionidae: Coleoptera) larvae at early (EL), middle (ML) and old (OL) developmental stages were investigated. Results showed that the EL and ML had the highest content of protein (53.87 g/100 g dw) and fat (67.95 g/100 g), respectively, and three kinds of RPW larvae were all found to be rich in unsaturated fatty acids (52.17-53.12%), potassium (5707.12-15,865.04 mg/kg) and phosphorus (2123.87-7728.31 mg/kg). In addition, their protein contained 17 amino acids with the largest proportion of glutamate. A total of 424 metabolites mainly including lipids and lipid-like molecules, organic acids and their derivatives, organic heterocycle compounds, alkaloids and their derivatives, etc. were identified in the RPW larvae. There was a significant enrichment in the ABC transport, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, and mTOR signaling pathways as the larvae grow according to the analysis results of the metabolic pathways of differential metabolites. The water extract of EL exhibited relatively higher hydroxyl, 2,2-diphenyl-1-pyrroline hydrochloride (DPPH) and 2,2'-azobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging ability with the EC50 values of 1.12 mg/mL, 11.23 mg/mL, and 2.52 mg/mL, respectively. These results contribute to a better understanding of the compositional changes of the RPW larvae during its life cycle and provide a theoretical grounding for its deep processing and high-value utilization.

8.
Toxics ; 12(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38668492

ABSTRACT

Due to their significant environmental impact, there has been a gradual restriction of the production and utilization of legacy per- and polyfluoroalkyl substances (PFAS), leading to continuous development and adoption of novel alternatives. To effectively identify the potential environmental risks from crop consumption, the levels of 25 PFAS, including fourteen perfluoroalkyl acids (PFAAs), two precursor substances and nine novel alternatives, in agricultural soils and edible parts of various crops around a fluoride industrial park (FIP) in Changshu city, China, were measured. The concentration of ΣPFAS in the edible parts of all crops ranged from 11.64 to 299.5 ng/g, with perfluorobutanoic acid (PFBA) being the dominant compound, accounting for an average of 71% of ΣPFAS. The precursor substance, N-methylperfluoro-octanesulfonamidoacetic acid (N-MeFOSAA), was detected in all crop samples. Different types of crops showed distinguishing accumulation profiles for the PFAS. Solanaceae and leafy vegetables showed higher levels of PFAS contamination, with the highest ΣPFAS concentrations reaching 190.91 and 175.29 ng/g, respectively. The highest ΣAlternative was detected in leafy vegetables at 15.21 ng/g. The levels of human exposure to PFAS through crop consumption for various aged groups were also evaluated. The maximum exposure to PFOA for urban toddlers reached 109.8% of the standard value set by the European Food Safety Authority (EFSA). In addition, short-chained PFAAs and novel alternatives may pose potential risks to human health via crop consumption.

10.
J Exp Biol ; 227(9)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38634224

ABSTRACT

In many species of animals, red carotenoid-based coloration is produced by metabolizing yellow dietary pigments, and this red ornamentation can be an honest signal of individual quality. However, the physiological basis for associations between organism function and the metabolism of red ornamental carotenoids from yellow dietary carotenoids remains uncertain. A recent hypothesis posits that carotenoid metabolism depends on mitochondrial performance, with diminished red coloration resulting from altered mitochondrial aerobic respiration. To test for an association between mitochondrial respiration and red carotenoids, we held wild-caught, molting male house finches in either small bird cages or large flight cages to create environmental challenges during the period when red ornamental coloration is produced. We predicted that small cages would present a less favorable environment than large flight cages and that captivity itself would decrease both mitochondrial performance and the abundance of red carotenoids compared with free-living birds. We found that captive-held birds circulated fewer red carotenoids, showed increased mitochondrial respiratory rates, and had lower complex II respiratory control ratios - a metric associated with mitochondrial efficiency - compared with free-living birds, though we did not detect a difference in the effects of small cages versus large cages. Among captive individuals, the birds that circulated the highest concentrations of red carotenoids had the highest mitochondrial respiratory control ratio for complex II substrate. These data support the hypothesis that the metabolism of red carotenoid pigments is linked to mitochondrial aerobic respiration in the house finch, but the mechanisms for this association remain to be established.


Subject(s)
Carotenoids , Finches , Mitochondria , Animals , Carotenoids/metabolism , Male , Finches/physiology , Finches/metabolism , Mitochondria/metabolism , Cell Respiration , Oxygen Consumption
11.
Poult Sci ; 103(6): 103697, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38608389

ABSTRACT

To improve the thermal gel properties of egg yolk, the effect of several valence metal ions (K+, Ca2+, Mg2+ and Fe3+) with different concentrations (0-0.72%) on the rheological, gel, and structural properties of egg yolk were investigated. Results showed that monovalent and divalent ions were beneficial to the formation of uniform and dense gel network, especially with the addition of 0.72% magnesium ion, which further improved gel hardness, water holding capacity (WHC) and viscoelastic properties, the properties of egg yolk gel increased with the increase of the concentration of mono-bivalent metal ions. Adding ferric ion remarkably increased the average particle size (d4,3) and apparent viscosity of egg yolk, destroying the disulfide bonds and the hydrophobic interactions in gel. Fourier transform infrared spectroscopy (FT-IR) and fluorescence spectra analysis revealed that metal ions promoted the hydrophobic aggregation among egg yolk proteins and induced the transition of protein secondary structure from ordered to disordered. This work will provide a theoretical reference for the development of low salt and nutrient fortified egg yolk products.

12.
Emerg Microbes Infect ; 13(1): 2332670, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38646911

ABSTRACT

This study aimed to provide data for the clinical features of invasive pneumococcal disease (IPD) and the molecular characteristics of Streptococcus pneumoniae isolates from paediatric patients in China. We conducted a multi-centre prospective study for IPD in 19 hospitals across China from January 2019 to December 2021. Data of demographic characteristics, risk factors for IPD, death, and disability was collected and analysed. Serotypes, antibiotic susceptibility, and multi-locus sequence typing (MLST) of pneumococcal isolates were also detected. A total of 478 IPD cases and 355 pneumococcal isolates were enrolled. Among the patients, 260 were male, and the median age was 35 months (interquartile range, 12-46 months). Septicaemia (37.7%), meningitis (32.4%), and pneumonia (27.8%) were common disease types, and 46 (9.6%) patients died from IPD. Thirty-four serotypes were detected, 19F (24.2%), 14 (17.7%), 23F (14.9%), 6B (10.4%) and 19A (9.6%) were common serotypes. Pneumococcal isolates were highly resistant to macrolides (98.3%), tetracycline (94.1%), and trimethoprim/sulfamethoxazole (70.7%). Non-sensitive rates of penicillin were 6.2% and 83.3% in non-meningitis and meningitis isolates. 19F-ST271, 19A-ST320 and 14-ST876 showed high resistance to antibiotics. This multi-centre study reports the clinical features of IPD and demonstrates serotype distribution and antibiotic resistance of pneumococcal isolates in Chinese children. There exists the potential to reduce IPD by improved uptake of pneumococcal vaccination, and continued surveillance is warranted.


Subject(s)
Anti-Bacterial Agents , Multilocus Sequence Typing , Pneumococcal Infections , Serogroup , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/isolation & purification , Male , Pneumococcal Infections/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/mortality , Female , Child, Preschool , China/epidemiology , Infant , Anti-Bacterial Agents/pharmacology , Prospective Studies , Microbial Sensitivity Tests , Hospitals/statistics & numerical data , Child , Risk Factors , East Asian People
13.
Biomater Sci ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646699

ABSTRACT

Current mesh materials used for the clinical treatment of abdominal defects struggle to balance mechanical properties and bioactivity to support tissue remodeling. Therefore, a bioactive microgel-coated electrospinning membrane was designed with the superiority of cell-instructive topology in guiding cell behavior and function for abdominal wall defect reconstruction. The electrostatic spinning technique was employed to prepare a bioabsorbable PLCL fiber membrane with an effective mechanical support. Additionally, decellularized matrix (dECM)-derived bioactive microgels were further coated on the fiber membrane through co-precipitation with dopamine, which was expected to endow cell-instructive hydrophilic interfaces and topological morphologies for cell adhesion. Moreover, the introduction of the dECM into the microgel promoted the myogenic proliferation and differentiation of C2C12 cells. Subsequently, in vivo experiments using a rat abdominal wall defect model demonstrated that the bioactive microgel coating significantly contributed to the reconstruction of intact abdominal wall structures, highlighting its potential for clinical application in promoting the repair of soft tissue defects associated with abdominal wall damage. This study presented an effective mesh material for facilitating the reconstruction of abdominal wall defects and contributed novel design concepts for the surface modification of scaffolds with cell-instructive interfaces and topology.

14.
J Sci Food Agric ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567870

ABSTRACT

BACKGROUND: Gel property is among the crucial functional properties of egg yolk (EY), which determines the texture and flavor of EY products. In the present study, the effects of two unsaturated fatty acids [monounsaturated fatty acid oleic acid (OA) and diunsaturated fatty acid linoleic acid (LA)] on the gel properties of EY protein were investigated. RESULTS: Compared with the blank group, the addition of LA and OA (10-50 g kg-1) improved the gel hardness (from 270.54 g to 385.85 g and 414.38 g, respectively) and viscosity coefficient (from 0.015 Pa.sn to 11.892 Pa.sn and 1.812 Pa.sn, respectively). The surface hydrophobicity of EY protein increased to a maximum value of 40 g kg-1 with the addition of both fatty acids (39.06 µg and 41.58 µg, respectively). However, excess unsaturated fatty acids (≥ 50 g kg-1) disrupted the completeness of the gel matrix and weakened the structural properties of the EY gel. CONCLUSION: Both fatty acids improved the gel properties of EY protein. At the same addition level, OA was superior to LA in improving gel properties. The present study provides a theoretical underpinning for the sensible application of unsaturated fatty acids in improving EY gel properties. © 2024 Society of Chemical Industry.

15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673880

ABSTRACT

Drought is one of the major abiotic stresses with a severe negative impact on maize production globally. Understanding the genetic architecture of drought tolerance in maize is a crucial step towards the breeding of drought-tolerant varieties and a targeted exploitation of genetic resources. In this study, 511 quantitative trait loci (QTL) related to grain yield components, flowering time, and plant morphology under drought conditions, as well as drought tolerance index were collected from 27 published studies and then projected on the IBM2 2008 Neighbors reference map for meta-analysis. In total, 83 meta-QTL (MQTL) associated with drought tolerance in maize were identified, of which 20 were determined as core MQTL. The average confidence interval of MQTL was strongly reduced compared to that of the previously published QTL. Nearly half of the MQTL were confirmed by co-localized marker-trait associations from genome-wide association studies. Based on the alignment of rice proteins related to drought tolerance, 63 orthologous genes were identified near the maize MQTL. Furthermore, 583 candidate genes were identified within the 20 core MQTL regions and maize-rice homologous genes. Based on KEGG analysis of candidate genes, plant hormone signaling pathways were found to be significantly enriched. The signaling pathways can have direct or indirect effects on drought tolerance and also interact with other pathways. In conclusion, this study provides novel insights into the genetic and molecular mechanisms of drought tolerance in maize towards a more targeted improvement of this important trait in breeding.


Subject(s)
Droughts , Genome-Wide Association Study , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Zea mays/physiology , Stress, Physiological/genetics , Chromosome Mapping , Phenotype , Genes, Plant , Drought Resistance
16.
J Dent ; 145: 104968, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38561038

ABSTRACT

OBJECTIVES: To determine and compare the opportunistic respiratory pathogenic index (ORPI) and prevalence of respiratory pathogens between clean and unclean removable prostheses. METHODS: A cross-sectional study was conducted among 97 removable prosthesis wearers at a teaching dental hospital. Participants' prosthesis hygiene was grouped into clean and unclean. After prosthesis plaque samples were sequenced using the Type IIB Restriction-site Associated DNA Sequencing for Microbiome method, the prevalence was assessed for the presence of respiratory pathogens on each sample. The ORPIs for clean and unclean prostheses were quantified based on the sum of the relative abundance of respiratory pathogenic bacteria in a microbiome using a reference database that contains opportunistic respiratory pathogens and disease-associated information. RESULTS: A total of 30 opportunistic respiratory pathogens were identified on the removable prostheses. Eighty-one (83.5 %) removable prostheses harboured respiratory pathogenic bacteria. Stenotrophomonas maltophilia (34.0 %), Pseudomonas aeruginosa (27.8 %), and Streptococcus agalactiae (27.8 %) were the top three prevalent respiratory pathogens detected in plaque samples. There was a significantly higher prevalence of respiratory pathogens residing on unclean than clean prostheses (P = 0.046). However, the ORPIs in both groups showed no statistically significant difference (P = 0.516). CONCLUSIONS: The ORPIs for both clean and unclean prostheses demonstrated a similar abundance of respiratory pathogens. However, the high prevalence of respiratory pathogens residing on unclean prostheses should not be underestimated. Therefore, maintaining good prosthesis hygiene is still important for overall oral and systemic health, even though the direct link between prosthesis cleanliness and reduced abundance of respiratory pathogens has not been established. CLINICAL SIGNIFICANCE: The association between the prevalence of respiratory pathogens and unclean removable prostheses has been demonstrated and might increase the theoretical risk of respiratory disease development.

17.
Periodontol 2000 ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591622

ABSTRACT

Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.

18.
Neuroradiology ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592454

ABSTRACT

PURPOSE: Posterior circulation ischemic stroke (PCIS) possesses unique features. However, previous studies have primarily or exclusively relied on anterior circulation stroke cases to build machine learning (ML) models for predicting onset time. To date, there is no research reporting the effectiveness and stability of ML in identifying PCIS onset time. We aimed to build diffusion-weighted imaging-based ML models to identify the onset time of PCIS patients. METHODS: Consecutive PCIS patients within 24 h of definite symptom onset were included (112 in the training set and 49 in the independent test set). Images were processed as follows: volume of interest segmentation, image feature extraction, and feature selection. Five ML models, naïve Bayes, logistic regression, tree ensemble, k-nearest neighbor, and random forest, were built based on the training set to estimate the stroke onset time (binary classification: ≤ 4.5 h or > 4.5 h). Relative standard deviations (RSD), receiver operating characteristic (ROC) curves, and the calibration plot was performed to evaluate the stability and performance of the five models. RESULTS: The random forest model had the best performance in the test set, with the highest area under the curve (AUC, 0.840; 95% CI: 0.706, 0.974). This model also achieved the highest accuracy, sensitivity, specificity, positive predictive value, and negative predictive value (83.7%, 64.3%, 91.4%, 75.0%, and 86.5%, respectively). Furthermore, the model had high stability (RSD = 0.0094). CONCLUSION: The PCIS case-based ML model was effective for estimating the symptom onset time and achieved considerably high specificity and stability.

19.
Chemosphere ; 358: 142138, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670504

ABSTRACT

Cadmium (Cd), a well-established developmental toxicant, accumulates in the placentae and disrupts its structure and function. Population study found adverse pregnancy outcomes caused by environmental Cd exposure associated with cell senescence. However, the role of autophagy activation in Cd-induced placental cell senescence and its reciprocal mechanisms are unknown. In this study, we employed animal experiments, cell culture, and case-control study to investigate the above mentioned. We have demonstrated that exposure to Cd during gestation induces placental senescence and activates autophagy. Pharmacological and genetic interventions further exacerbated placental senescence induced by Cd through the suppression of autophagy. Conversely, activation of autophagy ameliorated Cd-induced placental senescence. Knockdown of NBR1 exacerbated senescence in human placental trophoblast cells. Further investigations revealed that NBR1 facilitated the degradation of p21 via LC3B. Our case-control study has demonstrated a positive correlation between placental senescence and autophagy activation in all-cause fetal growth restriction (FGR). These findings offer a novel perspective for mitigating placental aging and placental-origin developmental diseases induced by environmental toxicants.

20.
Heliyon ; 10(6): e27049, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509983

ABSTRACT

Background: Circadian rhythms play a key role in the failing heart, but the exact molecular mechanisms linking changes in the expression of circadian rhythm-related genes to heart failure (HF) remain unclear. Methods: By intersecting differentially expressed genes (DEGs) between normal and HF samples in the Gene Expression Omnibus (GEO) database with circadian rhythm-related genes (CRGs), differentially expressed circadian rhythm-related genes (DE-CRGs) were obtained. Machine learning algorithms were used to screen for feature genes, and diagnostic models were constructed based on these feature genes. Subsequently, consensus clustering algorithms and non-negative matrix factorization (NMF) algorithms were used for clustering analysis of HF samples. On this basis, immune infiltration analysis was used to score the immune infiltration status between HF and normal samples as well as among different subclusters. Gene Set Variation Analysis (GSVA) evaluated the biological functional differences among subclusters. Results: 13 CRGs showed differential expression between HF patients and normal samples. Nine feature genes were obtained through cross-referencing results from four distinct machine learning algorithms. Multivariate LASSO regression and external dataset validation were performed to select five key genes with diagnostic value, including NAMPT, SERPINA3, MAPK10, NPPA, and SLC2A1. Moreover, consensus clustering analysis could divide HF patients into two distinct clusters, which exhibited different biological functions and immune characteristics. Additionally, two subgroups were distinguished using the NMF algorithm based on circadian rhythm associated differentially expressed genes. Studies on immune infiltration showed marked variances in levels of immune infiltration between these subgroups. Subgroup A had higher immune scores and more widespread immune infiltration. Finally, the Weighted Gene Co-expression Network Analysis (WGCNA) method was utilized to discern the modules that had the closest association with the two observed subgroups, and hub genes were pinpointed via protein-protein interaction (PPI) networks. GRIN2A, DLG1, ERBB4, LRRC7, and NRG1 were circadian rhythm-related hub genes closely associated with HF. Conclusion: This study provides valuable references for further elucidating the pathogenesis of HF and offers beneficial insights for targeting circadian rhythm mechanisms to regulate immune responses and energy metabolism in HF treatment. Five genes identified by us as diagnostic features could be potential targets for therapy for HF.

SELECTION OF CITATIONS
SEARCH DETAIL
...